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4 Place Jussieu, 75255 Paris Cedex France

2Laboratoire de Physique de la Matiere Condensee (UMR 7643), CNRS—Ecole Polytechnique,
F-91128 Palaiseau Cedex France

(Received 5 May 2010; revised manuscript received 14 September 2010; published 8 October 2010)

We present an exact calculation of the mean first-passage time to a small target on the surface of a 2D or

3D spherical domain, for a molecule performing surface-mediated diffusion. This minimal model of

interfacial reactions, which explicitly takes into account the combination of surface and bulk diffusion,

shows the importance of correlations induced by the coupling of the switching dynamics to the geometry

of the confinement, ignored so far. Our results show that, in the context of interfacial systems in

confinement, the reaction time can be minimized as a function of the desorption rate from the surface,

which puts forward a general mechanism of enhancement and regulation of chemical and biological

reactivity.
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Among reactions limited by transport, interfacial reac-
tions, for which molecules react on target sites located on
the surface of the confining domain [1], play an important
role in situations as various as heterogeneous catalysis [2],
reactions in porous media, or biochemical reactions on
DNA [3] and in vesicular systems [4–6]. Besides being a
problem of great practical importance, the modeling of
such systems raises two types of theoretical issues: (i) to
determine the impact of geometrical parameters of the
confining domain, such as the volume, on reaction kinetics,
and (ii) to account for the reactive trajectories which
combine bulk and surface-mediated diffusion phases due
to the affinity of the molecules for the surface (see Fig. 1).

The point (i) has been studied in the case of a perfectly
reflecting surface [6–10] and a universal scaling with the
confining volume was found for the mean first-passage
time (MFPT) to a reactive target [11,12]. On the other
hand, reactive paths of point (ii) can be described as
trajectories involving two states, one adsorbed on the
surface and one desorbed in the bulk. Such two-state paths
have been studied in the broader context of intermittent
search strategies under the hypothesis that the times spent
in each state are controlled by an internal clock indepen-
dent of any geometrical parameter [13–15]. In most cases,
the sojourn times in each state have been assumed to be
exponentially distributed [14], with the notable exception
of Levy [16] and deterministic laws [17,18].

However, in the case of interfacial reactions in confine-
ment, the time spent in a bulk excursion is controlled by the
statistics of return to the surface and therefore by the
geometry of the confining domain [19–22]. Hence, this
return time is not an external parameter but is generated
by the very dynamics of the diffusing molecule in confine-
ment. As a result, the usual methods to calculate mean
search times for intermittent processes only provide

a mean-field (MF) approximation of the reaction time
which completely ignores the correlations induced by the
coupling of the switching dynamics to the geometry of the
confinement (see [14] for review, and more recently [23]).
Here we calculate exactly in the representative example

of a spherical domain the MFPT to a reactive site on the
sphere for a molecule alternating phases of bulk and sur-
face diffusion. Our analytical approach fully complies with
points (i) and (ii) and shows that correlations actually
strongly impact on reaction times, which are substantially
underestimated by standard MF treatments. In addition, we
discuss the problem of the minimization of the reaction
time with respect to the mean adsorption time of the
molecule on the surface, which is a priori not clear.
Indeed, the benefit of bulk diffusion, even if much faster
than surface diffusion, is questionable, since the mean time
spent in bulk excursions diverges with the volume of the
confining domain. Surprisingly enough, we will show that,

FIG. 1 (color online). Model of surface-mediated reaction in
confinement.
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even for bulk and surface diffusion coefficients of the same
order of magnitude, the reaction time can be minimized,
whereas the MF treatment of [23] predicts a monotonic
behavior.

At the theoretical level, these results bring an exact
solution to an extension to the so-called narrow-escape
problem (time needed to escape through a small window
of an otherwise reflecting domain), which has attracted
a lot of attention in the last few years both in the mathe-
matical [6,9,24,25] and physical [23,26] literature, partly
due to the challenge of taking into account mixed boundary
conditions. At the level of bio and chemical physics, it puts
forward a general mechanism of enhancement and regula-
tion of chemical reactivity by tuning the affinity of the
reactants for the surface of the confining domain.

As an archetype of confined interfacial systems, we
consider a molecule in a spherical domain S of radius R
(see Fig. 1), alternating phases of surface diffusion on @S
with diffusion coefficient D1 and phases of bulk diffusion
in S with diffusion coefficient D2. The time spent during
each surface phase is assumed to follow an exponential law
with desorption rate �, which is reminiscent of a first-order
kinetics. At each desorption event, the molecule is assumed
to be radially ejected at a distance a from the surface
(otherwise it is instantaneously readsorbed). Although for-
mulated for any value of this parameter a smaller than R, in
most situations of physical interest a � R. For the sake of
simplicity, we first present the case of a pointlike target on
a 2D sphere (disk), and then generalize our approach to
targets of angular extension 2� on 2D and 3D spheres.

Pointlike target in 2D. We start with the example of a
pointlike target (� ¼ 0) on the surface of a 2D sphere. Note
that, as opposed to narrow-escape problems for one-state
diffusion [6], the limit � ! 0 is not singular and the MFPT
at the target is finite, thanks to the one-dimensional surface
diffusion. This MFPT satisfies the following backward
equations [27]:

D1�@St1ð�Þ þ �½t2ðR� a; �Þ � t1ð�Þ� ¼ �1; (1)

D2�St2ðr; �Þ ¼ �1; (2)

where t1 stands for the MFPT starting from the adsorbed
state at a position defined on the surface by the polar angle
�, and t2 for the MFPT starting from the point (r, �) in the
bulk. Here,�@S ¼ @2�=R

2 and�S ¼ @2r þ @r=rþ @2�=r
2. In

Eqs. (1) and (2) the first term of the left-hand side accounts
for the diffusion, respectively, on the surface and in the
bulk, while the second term of Eq. (1) describes desorption
events. They have to be completed by boundary conditions:
t2ðR; �Þ ¼ t1ð�Þ, which describes the adsorption events and
t1ð� ¼ 0Þ ¼ 0 ¼ t1ð� ¼ 2�Þ, which expresses that the tar-
get is an absorbing point in the problem. As we proceed to
show, these equations can be solved exactly.

Considering t2 as a source term in Eq. (1) with absorbing
conditions at � ¼ 0 and � ¼ 2�, whose Green function is
well known [28], t1 writes

t1ð�Þ ¼ 1

! sinhð2�!Þ
Z 2�

0
sinhð!�<Þ sinh½!ð2�� �>Þ�

�
�
R2

D1

þ �R2

D1

t2ðR� a; �0Þ
�
d�0; (3)

where we have used the dimensionless variable ! �
R

ffiffiffiffiffiffiffiffiffiffiffiffi
�=D1

p
and the notations �< ¼ minð�; �0Þ and �> ¼

maxð�; �0Þ. On the other hand, Eq. (2) is easily shown to
be satisfied by the following Fourier series:

t2ðr; �Þ ¼ �0 � r2

4D2

þ X1
n¼1

�n

�
r

R

�
n
cosðn�Þ; (4)

where the unknown coefficients �n have to be calculated.
We aim at determining the reaction time, defined here as
the MFPT at the target, for a molecule initially uniformly
distributed on the circumference, i.e., ht1i � 1

2� �R
2�
0 t1ð�Þd�. Substituting Eqs. (3) and (4) in the boundary

conditions leads after straightforward integrations to

1

!2

�
�0 � R2

4D2

þ X1
n¼1

�n cosðn�Þ
�
coshð2�!Þ

¼ 2 sinhð�!Þ
!

�
1

�
þ �0 � R2x2

4D2

�
ð coshð�!Þ

� coshð!ð�� �ÞÞþ! sinhð2�!Þ

� X1
n¼1

�n

xn

!2 þ n2
cosðn�Þ � 2! sinhð�!Þ

� cosh½!ð�� �Þ� X
1

n¼1

�n

xn

!2 þ n2
; (5)

where x � 1� a=R. The projection of Eq. (5) on the
functions cosðn�Þ leads to an infinite hierarchy of equa-
tions for �n, n 2 N, which can be decoupled. It finally
yields an exact expression of the reaction time:

ht1i ¼
�
1

�
þ R2

4D2

ð1� x2Þ
��X1

m¼1

2!2

!2ð1� xmÞ þm2

�
: (6)

Several comments are in order. (i) As expected, both limits
� ! 0 and a ! 0 of the reaction time are given by
�2R2=ð3D1Þ which corresponds to a pure 1D diffusion,
with a molecule initially uniformly distributed in ½0; 2�R�
with absorbing boundaries [27]. (ii) The limit a ! R of
Eq. (6) corresponds actually to rebinding positions uni-
formly distributed on the surface, and can therefore be
recovered from the MF treatment of [14], which ignores
the correlations between starting and ending points of bulk
excursions. Actually, it can be checked that this type of MF
treatment, which has been successfully used in the context
of target search on DNA [14], substantially underestimates
the reaction time in the physical regime a � R in the
present case of interfacial reactions, where correlations
play a crucial role. Note that the MF approach of [23]
even misses the nonmonotonicity with �. (iii) Eq. (6) has
a clear physical interpretation: the reaction time is the
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product of the mean duration of each elementary step
composed of one surface exploration and one excursion in
the bulk phase, by the mean number of excursions before
reaction. This factorized structure is expected in the limit of
a large number of excursions since the durations of elemen-
tary steps are independent variables, all independent of the
number of excursions, except for the very last one.

Importantly, a first-order small � expansion of the reac-
tion time allows one to show that the reaction time is a
nonmonotonic function of the desorption rate � if

D1

D2

<
24

�2ð1� x2Þ
X1
n¼1

1

n4
ð1� xnÞ; (7)

which becomes D2=D1 >�2=½12�ð3Þ� � 0:68 . . . in the
relevant limit a=R � 1 (i.e., x ! 1), where � is the
Riemann function. In other words, even if D2 is smaller
than D1, bulk excursions speed up the reaction. Focusing
on this limit a=R � 1 and D1 � D2, a detailed analysis
of the reaction time given explicitly by Eq. (6) shows
that the optimal � is given to leading order by �opt �
2D2 lnð2D2=D1Þ=ðaRÞ. In turn, the gain, defined as the
ratio of the reaction time in absence of bulk excursion
over the optimal reaction time, is found to be proportional
to D2=D1, up to logarithmic corrections. This shows that
for fast bulk diffusion, reactivity can be significantly en-
hanced by surface-mediated diffusion by a proper tuning of
the affinity of the reactants for the surface (see Fig. 2
for � ¼ 0).

Extended target in 2D.—The previous analysis can be
generalized to the important case of an extended target
zone (of angular extension 2�), especially relevant to the
case of escape problems [6]. The calculation leads in this
case to an infinite hierarchy of coupled equations for �n,
n 2 N, in contrast to the pointlike target case. This
additional complexity results from the fact that the target
can now be reached not only from the surface, but also
directly from the bulk. The first terms of an exact pertur-
bative expansion in � can be obtained and read:

ht1ð�Þi¼ ht1ð�¼ 0Þiþ!2

�
1

�
þ R2

4D2

ð1�x2Þ
�

�
�
���þ

�
1þ X1

m¼1

2!2ð1�xmÞ
!2ð1�xmÞþm2

�
�2þ . . .

�
:

(8)

Note that the coefficients of �k of this expansion diverge
with !, so that in practice, the smaller !, the wider the
range of applicability in �. Figure 2 shows an excellent
quantitative agreement even for rather large values of �.

In addition, the benefit of bulk excursions can still be
analyzed with � � 0. A small � expansion of the reaction
time can be worked out, and shows that bulk excursions
reduce the reaction time provided that

D1

D2

<

P1
n¼1

24
n6
ð1�xnÞ½nð���Þcosðn�Þþ sinðn�Þ�2

�ð1�x2Þð���Þ3 : (9)

3D case.—The previous analysis can also be adapted to
the case of a confining 3D sphere, relevant to many situ-
ations such as reactions in micellar or vesicular systems
[5,6]. Equations (1) and (2) are still valid in this case with
�@S ¼ @�ðsin�@�Þ=ðR2 sin�Þ and �S is the usual 3D
Laplacian. Along the same lines [29], the first terms of
an exact small � expansion can be obtained and read:

ht1ð�Þi ¼ !2

�
1

�
þ R2

6D2

ð1� x2Þ
�
�

�
2 ln

�
2

�

�
� 1

� X1
n¼1

2nþ 1

nðnþ 1Þ
!2ð1� xnÞ

nðnþ 1Þ þ!2ð1� xnÞ
�
þ . . . :

(10)
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FIG. 2 (color online). Mean reaction time as a function of the
desorption rate in the 2D case, with D1 ¼ 1, D2 ¼ 5, a ¼ 0:1,
and R ¼ 1 (in arbitrary units): analytical perturbative expression
Eq. (8) vs Monte Carlo numerical simulations for different target
sizes �. Inset: mean reaction time as a function of the target size
for a fixed desorption rate � ¼ 0:125.

FIG. 3 (color online). Mean reaction time as a function of the
desorption rate in the 3D case with D1 ¼ 1, D2 ¼ 50, a ¼ 0:02,
and R ¼ 1 (in arbitrary units): analytical perturbative expression
Eq. (10) vs Monte Carlo simulations for a target of size
� ¼ 0:02. Inset: mean reaction time as a function of the target
size for a fixed desorption rate � ¼ 0:125.
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Similarly to the 2D case, one can show that bulk excursions
are beneficial under the condition that now reads

D1

D2

<

P1
n¼1ð1� xnÞ 3ð2nþ1Þ

n2ðnþ1Þ4 bn
2ð1� x2Þfln½2=ð1� cos�Þ� � ð1þ cos�Þ=2g (11)

where bn � ½ðn cos�þ nþ 1ÞPnðcos�Þ þ Pn�1ðcos�Þ�2
and Pn stand for Legendre polynomials, and that the reac-
tion time can be minimized. Figure 3 shows a good quan-
titative agreement of the expansion Eq. (10) with
Monte Carlo simulations and confirms that the reaction
time can be decreased by bulk excursions.

Entire FPT distribution.—Last, using the results given
recently in [30,31], we stress that an estimate of the entire
FPT distribution of the reduced variable t1=ht1i can be
inferred in the large size limit R ! 1 from the knowledge
of the MFPT calculated above. While an exponential form
is predicted in the 3D case (since the exploration of the
boundary is marginally compact), the FPT distribution in
the 2D case involves several time scales, and is given by a
sum of exponentials [see Eq. (5) of [31], case of compact
exploration]. Figure 4 shows a good agreement of this
theoretical prediction with numerical simulations.

In conclusion, we have presented an exact calculation
of the mean first-passage time to a small target on the
surface of a 2D and 3D spherical domain, for a molecule
performing surface-mediated diffusion. In the context of
interfacial systems in confinement, our results show that
the reaction time can be minimized as a function of the
desorption rate from the surface, which puts forward a
general mechanism of enhancement and regulation of
chemical reactivity.
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